direct product, p-group, abelian, monomial
Aliases: C2×C42, SmallGroup(32,21)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2×C42 |
C1 — C2×C42 |
C1 — C2×C42 |
Generators and relations for C2×C42
G = < a,b,c | a2=b4=c4=1, ab=ba, ac=ca, bc=cb >
Subgroups: 54, all normal (4 characteristic)
C1, C2, C4, C22, C22, C2×C4, C23, C42, C22×C4, C2×C42
Quotients: C1, C2, C4, C22, C2×C4, C23, C42, C22×C4, C2×C42
(1 23)(2 24)(3 21)(4 22)(5 9)(6 10)(7 11)(8 12)(13 25)(14 26)(15 27)(16 28)(17 30)(18 31)(19 32)(20 29)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 31 27 11)(2 32 28 12)(3 29 25 9)(4 30 26 10)(5 21 20 13)(6 22 17 14)(7 23 18 15)(8 24 19 16)
G:=sub<Sym(32)| (1,23)(2,24)(3,21)(4,22)(5,9)(6,10)(7,11)(8,12)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,31,27,11)(2,32,28,12)(3,29,25,9)(4,30,26,10)(5,21,20,13)(6,22,17,14)(7,23,18,15)(8,24,19,16)>;
G:=Group( (1,23)(2,24)(3,21)(4,22)(5,9)(6,10)(7,11)(8,12)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,31,27,11)(2,32,28,12)(3,29,25,9)(4,30,26,10)(5,21,20,13)(6,22,17,14)(7,23,18,15)(8,24,19,16) );
G=PermutationGroup([[(1,23),(2,24),(3,21),(4,22),(5,9),(6,10),(7,11),(8,12),(13,25),(14,26),(15,27),(16,28),(17,30),(18,31),(19,32),(20,29)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,31,27,11),(2,32,28,12),(3,29,25,9),(4,30,26,10),(5,21,20,13),(6,22,17,14),(7,23,18,15),(8,24,19,16)]])
C2×C42 is a maximal subgroup of
C22.7C42 C42⋊6C4 C42⋊4C4 C42⋊8C4 C42⋊5C4 C42⋊9C4 C23.63C23 C24.C22 C23.65C23 C24.3C22 C23.67C23 C4⋊M4(2) C42.12C4 C42.6C4 C23.36C23 C22.26C24 C23.37C23
C2×C42 is a maximal quotient of
C42⋊4C4 C8○2M4(2)
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 4A | ··· | 4X |
order | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | + | + | |
image | C1 | C2 | C2 | C4 |
kernel | C2×C42 | C42 | C22×C4 | C2×C4 |
# reps | 1 | 4 | 3 | 24 |
Matrix representation of C2×C42 ►in GL3(𝔽5) generated by
1 | 0 | 0 |
0 | 4 | 0 |
0 | 0 | 4 |
2 | 0 | 0 |
0 | 2 | 0 |
0 | 0 | 2 |
3 | 0 | 0 |
0 | 3 | 0 |
0 | 0 | 4 |
G:=sub<GL(3,GF(5))| [1,0,0,0,4,0,0,0,4],[2,0,0,0,2,0,0,0,2],[3,0,0,0,3,0,0,0,4] >;
C2×C42 in GAP, Magma, Sage, TeX
C_2\times C_4^2
% in TeX
G:=Group("C2xC4^2");
// GroupNames label
G:=SmallGroup(32,21);
// by ID
G=gap.SmallGroup(32,21);
# by ID
G:=PCGroup([5,-2,2,2,-2,2,40,86]);
// Polycyclic
G:=Group<a,b,c|a^2=b^4=c^4=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations